- Регистрация
- 24.09.2021
- Сообщения
- 38 365
Научитесь легко собирать данные из различных систем. Прокачайтесь до уровня middle в прогнозировании и визуализации в R-Studio. Автоматизируйте рутинные задачи R – самый популярный язык программирования среди аналитиков по данным опроса O’Reilly Media Мы живём в эпоху цифровизации, когда каждый процесс можно автоматизировать и упростить свою работу. На языке R можно написать код, который освободит вам время для новых проектов. Самая универсальная область применения R — аналитика. Используя R, вы можете провести статистические тесты и проверить гипотезы, построить графики и сделать прогноз. Кому подойдёт этот курс Интернет-маркетологам Получите инструмент для работы с данными. Автоматизируете рутинные операции и научитесь создавать информативные отчёты. Начнёте говорить с программистами на одном языке. Начинающим аналитикам Добавите ещё один профессиональный навык в резюме и углубите понимание статистики. Научитесь собирать и анализировать в одном месте данные по всем проектам. Чему вы научитесь - Собирать данные из большинства аналитических систем - Преобразовывать R-скрипты для переработки получаемых данных в зависимости от задач - Анализировать процессы с помощью скриптов и показывать результаты на графиках Программа курса Модуль 1 - Базовые принципы программирования на R Рассмотрим базовые возможности языка R, научимся настраивать R-Studio и начнём использовать для простых операций. 1. R и R-Studio 2. Переменные их типы 3. Объявление переменных в R 4. Арифметические операции 5. Логические переменные и операции 6. Ветвление 7. Циклы Модуль 2 - Отличия R от традиционного программирования Познакомимся с векторами и техниками программирования в R. 1. Понятие вектора, векторные операции 2. Использование функций 3. Обзор основных функций и пакетов R Модуль 3 - Работа с наборами данных Научимся импортировать данные в R, познакомимся с фреймами данных, освоим базовые операции (просмотр, обращение к данным, преобразование, соединение, фильтрация). 1. DataFrame — что это и для чего 2. Импорт DataFrame в R 3. Простейшее исследование DataFrame 4. Доступ к переменным DataFrame (знак $) 5. Базовые операции с DataFrame 6. Фильтрация DataFrame Модуль 4 - Визуализация в R Познакомимся со способами визуализации данных в R, научимся применять визуализацию в зависимости от данных, интерпретировать графики. Научимся оценивать распределение, описательные статистики для двух и более переменных, узнаем о корреляции и регрессии. 1. Основы визуализации в R 2. Построение гистограмм — функция hist 3. Построение boxplot 4. Построение графиков зависимостей двух переменных Модуль 5 - Продвинутая визуализация в R Познакомимся с продвинутыми способами визуализации данных в R, научимся работать со сложными наборами данных и интерпретировать их. 1. Базовый шаблон ggplot 2. Геометрические типы и преобразования 3. Управление графическими параметрами 4. Группировка данных 5. Системы координат 6. Оси, легенды, подписи 7. Разделение графиков по фасетам 8. Интерактивная визуализация в Shiny Модуль 6 - Исследовательский анализ данных в R Научимся подготавливать данные к дальнейшей работе, анализу структуры, классификации без обучения (кластерный анализ). 1. Стандартизация данных 2. Иерархическая кластеризация 3. Метод k-средних (kmeans) 4. Основы мультивариативного анализа в R Модуль 7 - Основы прогнозирования в R Узнаем про основные модели прогнозирования, познакомимся с линейной регрессией и научимся её построению, оценке и использованию. 1. Модели прогнозирования 2. Линейная регрессия 3. Построение модели линейной регрессии в R 4. Оценка модели линейной регрессии и её использование Модуль 8 - Создание и использование моделей в R Узнаем больше о различных моделях прогнозирования и их использовании в полевых условиях, научимся их строить и валидировать. Познакомимся с работой с предсказанием категории и с несбалансированными данными. Логистическая регрессия Основные модели, основанные на деревьях решений Валидация модели Дилемма смещения-дисперсии Работа с предсказанием категории Работа с несбалансированными данными Имплементация модели в работу компании |